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Abstract

In the following, I estimate a small-scale New Keynesian DSGE model in which agents
use an adaptive learning scheme as described in (Evans and Honkapohja 2001) to form expec-
tations of future economic variables. A nascent literature explores the empirical importance
of adaptive learning in DSGE models and often finds that models with adaptive learning fare
better, as measured by marginal data density, than their rational expectations analogues. We
add to this literature by providing the first systematic Bayesian evaluation of the choice of
initial beliefs with which to endow agents in the model. I first review the Adaptive Learning
framework in DSGE modeling, after which I review Bayesian estimation of DSGE models so
that the reader can understand the technical challenges that adaptive learning poses specifi-
cally to the modeler. Finally, I present the empirical results, including parameter estimates and
marginal data densities for different initialization choices.

1 Introduction and Literature Review
The hypothesis of Rational Expectations remains a default assumption in empirical macroeco-
nomic modeling, despite persistent objections raised throughout the literature. These objections
include the facially dubious assumptions that agents have the perfect knowledge of the structure
of the of the economy and its parameters and that agents can coordinate with each other towards
a unique rational expectations equilibrium. Additionally, such models frequently require sources
of mechanical persistence with arguably suspect microfoundations in order to provide satisfactory
data fit. I estimate one such model presently under both rational expectations and an alternative
expectations formation hypotheses.

I first review the important theoretical foundations of adaptive learning and the stability proper-
ties of DSGE models with learning. After reviewing the foundations of adaptive learning in DSGE
models, I review much of the important empirical literature that studies adaptive learning. I will
find that, along several dimensions, DSGE models that relax the assumption of Rational Expecta-
tions, including but especially those that embed an adaptive learning rule, improve the fitment of
the data to the model. Earlier work, including (Milani 2007) or (Slobodyan and Wouters 2012b)
find that mechanical persistence parameters become arguably superfluous when relaxing the as-
sumption of rational expectations.
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My paper expands principally upon the work of (Milani 2007) in three dimensions. First,
to the best of my knowledge, this paper presents the first Bayesian estimation of agents’ initial
beliefs, in a model with mechanical persistence, by sampling over an explicit prior distribution
of agents’ initial beliefs. Second, I estimate models with differing information sets available to
agents and find differences in the model fit. I depart from (Milani 2007), (Milani 2014), and
(Slobodyan and Wouters 2012a) in omitting Markov-Chain Monte Carlo (MCMC) estimation of
DSGE models in favor of a Sequential Monte Carlo (SMC) estimate, as described in (Herbst and
Schorfheide 2013). The SMC method sports numerous advantages for the purpose of estimating
DSGE models, especially those models with ill-behaved, fairly non-normal posterior densities like
those of models that feature adaptive learning.

1.1 The Theory of Adaptive Learning
To motivate my empirical study study of the dynamics of DSGE models with adaptive learning, I
review the important theoretical results from the Adaptive Learning literature. Theoretical work in
this area deals extensively with the asymptotic properties of DSGE models with adaptive learning.
For any dynamic equilibrium solution to the DSGE model, that equilibrium is asymptotically stable
under learning if that equilibrium satisfies the “E-stability principle.”

Let T (φ) be a function that maps from agents’ subjective beliefs about economic dynamics to
actual economic dynamics. In the models which I estimate, this T-map arises from substituting
expectations formed through the adaptive learning algorithm into the difference equations implied
by the DSGE model. Thus the rational expectations solution to the model is the fixed-point of this
T-map. The rational expectations equilibrium is considered “expectationally stable” if around the
fixed point of the T-map there exists a neighborhood of beliefs wherein the differential equation

dφ

dτ
= T (φ)−φ

is asymptotically stable. One algorithm studied often in the literature is decreasing-gain least
squares, wherein agents give equal weight to all previous observations and the effect of new data
disappears in the limit as t → ∞. Under decreasing gain least squares, agents’ beliefs, captured in
φt and the second moment matrix Σt are updated according to the following formula:

φt = φt−1 +
1
t

Σ
−1
t X ′

t (Zt −φ
′
t−1Xt)

′

Σt = Σt−1 +
1
t
(XtX ′

t −Σt−1)

where Zt is the vector of variables observed agents at time t and Xt = (1,Zt−1)
′. (Marcet and

Sargent 1989) show that agents’ beliefs formed and updated through a recursive least squares al-
gorithm will, if the rational expectations equilibrium is expectationally stable and agents employ a
suitable projection facility, converge with probability one to the beliefs implied by the rational ex-
pectations equilibrium. A “projection facility” is a behavioral rule that keeps agents beliefs inside
a compact set around the fixed point of the T-map, which is the rational expectations equilibrium.
This asymptotic property would seem to imply that, in the limit as t → ∞, initial beliefs should not
matter to the distribution of beliefs across t.
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Despite these attractive asymptotic properties of adaptive learning algorithms, I am presently
interested in the short- and medium-run dynamics of the macroeconomy, and a growing empirical
and computational literature has documented the importance of these initial conditions. (Carceles-
Poveda and Giannitsarou 2007) examines recursive least squares, stochastic gradient learning, and
other learning algorithms and documents the importance to explaining short-run variation of the
right initialization choice. I will evaluate these choices using Bayesian methods, which I now
review briefly

1.2 Bayesian Estimation of DSGE models
The benchmark standard for introducing SMC methods as they apply to DSGE models is (Herbst
and Schorfheide 2016), who provide a code supplement that estimates a small-scale, purely for-
ward looking DSGE model using this method. In obtaining my own results via SMC, I minimally
modified the code provided by the authors of (Herbst and Schorfheide 2016) by replacing the given
likelihood and prior density functions with my own.

Below I review the Kalman Filter based likelihod function and the challenges presented by
Adaptive Learning. For this I rely principally upon (Zivot 2006), (Ljungqvist and Sargent 2012),
and (Hamilton 1994).

Without loss of generality, suppose one has some DSGE model that is described by the equa-
tions αt = Aαt−1 +Bαe

t+1 +Cεt . A unique solution to this model, if it exists, will be a vector
autoregressive process αt = T αt−1 + ct +Rηt , where αt is the observed or unobserved state vari-
able. A state space model for an N-dimensional time series yt consists of a measurement equation
relating the observed data to an m-dimensional state vector αt , and a Markovian transition equation
that describes the evolution of the state vector over time. The measurement equation has the form

yt = Ztαt +dt + εt , t = 1, . . . ,T,

where Zt is an N ×m matrix, dt is an N ×1 vector and εt is an N ×1 error vector such that

εt
i.i.d.∼ N (0,Ht).

The transition equation for the state vector αt is the first order Markov process

αt = Ttαt−1 + ct +Rtηt , t = 1, . . . ,T,

where Tt is an m×m transition matrix, ct is an m×1 vector, Rt is a m×g matrix, and ηt is a g×1
error vector satisfying

ηt
i.i.d.∼ N (0,Qt).

The state space representation is completed by specifying the behavior of the initial state

α0∼N (a0,P0),

E[εta′0] = 0, E[ηta′0] = 0 for t = 1, . . . ,T.

The matrices Zt , dt , Ht , Tt , ct , Rt and Qt are called the system matrices, and contain non-random
elements. If the system matrices are time-invariant then one may compute the initial state and its
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variance numerically using a Schur Decomposition. I used the function lyapunov_symm devel-
oped by (Adjemian 2023) and used by the DY NARE package. I use this instead of the kronecker
product vectorization and inversion technique described in (Zivot 2006) and used by (Herbst and
Schorfheide 2016) as it significantly speeds computation of the likelihood function for higher-
dimensional DSGE models.

The Kalman Filter gives a sequence of predictive distributions of the unobserved and observed
variables according to the equations below

yt = Ztαt +dt + εt , εt∼N (0,Ht)

αt = Ttαt−1 + ct +Rtηt , ηt∼N (0,Qt)

where yt is an N×1 vector of observable variables and αt an m×1 vector of (possibly) unobserved
states. For a sequence of system matrices {Zt ,dt ,Ht ,Tt ,ct ,Rt ,Qt}t=T

t=1 , let at = E(αt |yt) be the
optimal forecast of the state given information through time t, and Pt = E((at −αt)(at −αt)

′|yt)
be the variance of that optimal forecast. The Kalman filter consists of prediction and updating
equations.

The prediction equations describe E(at |yt−1)= at|t−1 and E(Pt |yt−1)=Pt|t−1. Those prediction
equations are:

at|t−1 = Ttat−1 + ct

Pt|t−1 = ZtPt−1Z′
t +RtQtR′

t

From these one can derive the optimal predictor of yt based on the information set yt−1 ≡
{yt}t−1

0 , the prediction error vt and the prediction error variance E(vtv′t)

yt|t−1 = Ztat|t−1 +dt

vt = yt − yt|t−1

E(vtv′t) = Ft = ZtPt|t−1Z′
t +Ht

The updating equations allows one to update at and Pt :

at = at|t−1 +Pt|t−1Z′
tF

−1
t vt (1)

Pt = Pt|t−1 −Pt|t−1Z′
tF

−1
t ZtPt|t−1 (2)

Which, when the system is linear and the innovations Gaussian, allows one to compute the
prediction-error-decomposition of the likelihood function:

ln(L(θ |y)) =−NT
2

ln(2π)− 1
2

T

∑
t=1

ln(|Ft(θ)|)−
1
2

T

∑
t=1

vt(θ)
′F−1

t (θ)vt(θ)
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I review the Kalman filter to explain two challenges with this class of models, first the choice of
information set with which to endow agents when they are making forecasts at time t, and second
the more general question of how to compute the likelihood function when agents use adaptive
learning to form expectations. Regarding the first challenge, I study two such information sets,
one in which agents know all variables up to t −1 and one in which they know all variables up to
t−1 and the time t i.i.d shocks. Knowledge of the i.i.d shocks does not directly affect the updating
equation for at in 2, but only affects the updating step indirectly by changing E(vtv′t) by changing
Pt|t−1 by changing Rt . It is at least possible, in principle, to incorporate knowledge of the i.i.d
shocks directly into the updating equation for at by deriving a solution to the model in the form of

yt = ayt−1 +bwt (3)
wt = cwt−1 +dεt (4)

through an eigenvalue decomposition solution to the DSGE model rather than the usual Schur
decomposition method. However, an eigenvalue decomposition in the form of 4 may not be possi-
ble for a model with expectations of varibles at multiple points in the future, such as t, t +1, t +2.

One challenge for the DSGE modeler is that these system matrices, specifically Tt are not
time-invariant but are instead functions of time-varying beliefs that agents hold. As shown in
(Hamilton 1994), this does not by itself preclude computation of the likelihood function as long as
those matrices are determinstic functions of prior states, which they are in the case of AL models.
Another challenge I frequently encountered is the existence of singular Ft matrices. I was unable
to eliminate the production of any such singular matrices, but imposition of a projection facility
in which beliefs lied within an open subset of the unit circle seemed to reduce to triviality the
incidence of such singular matrices.

Once I have a likelihood function and a prior density function, I can then estimate the posterior
density.

The most popular sampler in the DSGE literature, but one which I do not use, is the Metropolis
Hastings Random Walk (“MHRW” henceforth). The Sequential Monte Carlo method, I hope to
show, offers numerous advantages for the task of estimating DSGE models, especially those that
feature expectations formed via an adaptive learning mechanism.

Before describing the algorithm, it will be helpful to recount the basic Importance Sampling
algorithm:
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Algorithm 1 Importance Sampling
1: For i = 1 to N, draw θi ∼ g(θ) and compute the unnormalized importance weights wi =

w(θi) =
f (θi)
g(θi)

. f (θ) is usually the product of the prior and likelihood densities while g(θ)
is a proposal density

2: Compute the normalized importance weights:

Wi =
wi

1
N ∑

N
i=1 wi

.

3: An approximation of Eπ [h(θ)] is given by:

h̄N =
1
N

N

∑
i=1

Wih(θi).

The challenge to basic importance sampling as it applies to DSGE models is constructing
a proposal density g(θ). SMC methods allow for the sequential construction of this proposal
density. I recount the SMC algorithm here from (Herbst and Schorfheide 2016). Letting {ρn}

Nφ

n=1
be an ex ante provided sequence of zeros and ones that determine whether particles are resampled
in the selection step and let {ζn}

Nφ

n=1 be a sequence of tuning parameters for the Markov transition
density in the mutation step.
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Algorithm 2 Generic SMC with Likelihood Tempering

1: Initialization. (φ0 = 0). Draw the initial particles from the prior: θ i
1

i.i.d.∼ p(θ) and W i
1 = 1,

i = 1, . . . ,N.
2: Recursion. For n = 1, . . . ,Nφ ,

• Correction. Reweight the particles from stage n−1 by defining the incremental weights

w̃i
n = [p(Y |θ i

n−1)]
φn−φn−1

W̃ i
n =

w̃i
nW i

n−1
1
N ∑

N
i=1 w̃i

nW i
n−1

, i = 1, . . . ,N.

• Selection.
– Case (i): If ρn = 1, resample the particles via multinomial resampling. Let {θ̂}N

i
denote N i.i.d. draws from a multinomial distribution characterized by support points
and weights {θ i

n−1,W̃
i
n}N

i and set W i
n = 1.

– Case (ii): If ρn = 0, let θ̂ i
n = θ i

n−1 and W i
n = W̃ i

n, i = 1, . . . ,N.

• Mutation. Propagate the particles {θ̂ i,W i
n} via NMH steps of a MH algorithm with tran-

sition density θ i
n ∼ Kn(θn|θ̂ i

n;ζn) and stationary distribution πn(θ).

3: For n = Nφ (φNφ
= 1), the final importance sampling approximation of Eπ [h(θ)] is given by:

h̄Nφ ,N =
N

∑
i=1

h(θ i
Nφ
)W i

Nφ
.

Estimating the model using Sequential Monte Carlo methods gives far more precise and con-
sistent estimates of both the marginal posterior densities of each parameter and the marginal data
density. This owes largely to the fact that the accuracy of an SMC posterior simulator scales with
the number of particles used in that simulation, as (Herbst and Schorfheide 2013) show in report-
ing the mean and variance of several dozen SMC estimates of a forward looking DSGE model.
As SMC particles are mutated in parallel, the speed of the algorithm scales approximately linearly
with the number of processing cores available to the researcher. This enables the researcher to
take advantage of a high-performance computing cluster, such as an Amazon Web Services Elas-
tic Cloud Compute instance, to estimate a DSGE precisely, quickly, and consistently. Another
advantage SMC methods have over MCMC methods is the behavior of SMC moments in the pres-
ence of multi-modal posterior densities. MCMC methods can and frequently do very easily get
“stuck” in and around a local maximum away from the global maximum. While the probability of
sampling from each local maximum approaches one as the number of draws approaches infinity,
this probability can grow very slowly, far too slowly for even the most powerful workstation to
adequately sample the posterior in a reasonable amount of time. Sequential monte carlo methods
on the other hand effectively have thousands of starting points spread out through the prior of the
DSGE parameters. I plot the marginal posterior densities of each of the estimated parameters to
show that the SMC is able to effectively sample from multiple local maxima. One final advantage
of the SMC sampler is computation of the marginal likelihood. Consider that
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w̃i
n =

[
p(Y |θ i

n−1)
](φn−φn−1)

1
N

N

∑
i=1

w̃i
nW i

n−1 ≈
∫

[p(Y |θ)](φn−φn−1) pφn−1(Y |θ)p(θ)∫
pφn−1(Y |θ)p(θ)dθ

dθ

=

∫
p(Y |θ)φn p(θ)dθ∫

p(Y |θ)φn−1 p(θ)dθ

Which implies

Nφ

∏
n=1

(
1
N

N

∑
i=1

w̃i
nW i

n−1

)
≈
∫

p(Y |θ)p(θ)dθ

Thus with the SMC sampler I can compute the marginal likelihood sequentially. This is especially
useful when computation of the MHME proves intractable due to numerical underflow errors.

When estimating a DSGE model via SMC methods, a researcher must choose the number of
particles, the number of stages, and the tempering schedule for the algorithm. The number of
particles N increases the overall accuracy of the Monte Carlo approximation, but also increases the
number of likelihood evaluations and therefore the computational burden. Increasing the number
of stages will reduce the distance between bridge distributions and therefore reduce the cost of
maintaining uniformity of particle weights. The cost of increasing the number of stages is that
each stage demands more likelihood evaluations. Letting n denote the n− th stage, Nϕ denote the
number of stages, the sequence {ϕn}

Nϕ

n=0 describes the tempering schedule of the algorithm. The
parameter λ controls the shape of the tempering schedule

ϕn =

(
n

Nϕ

)λ

.

A large value of λ implies that the bridge distributions will be very similar (and close to the prior) at
the very early stages of the algorithm and very different near the end of the algorithm. In the DSGE
model applications, (Herbst and Schorfheide 2016) find that value of λ = 2 to be optimal because,
generally speaking, for λ < 2, information from the likelihood function dominates the prior density
too quickly and only a few particles survive the correction and selection steps. For λ > 2 the bridge
distributions become redundant and the algorithm computes the likelihood function too many times
unnecessarily.

1.3 Prior Estimation of DSGE models with learning
(Milani 2007), upon whom I expand in this paper, provides an example of an estimated DSGE
model with constant-gain least squares learning. In it, the author estimates a small-scale New
Keynesian DSGE model in which habit formation in consumption and inflation indexation in price-
setting is nested in the following equations governing the output gap and inflation
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x̃t = Êt x̃t+1 − (1−βη)σ(it − Êtπt+1 − rn
t )

π̃t = ξp[wxt +[(1−ηβ )σ ]−1x̃t ]+β Êt π̃t+1 +ut

it = ρit−1 +(1−ρ)[φππt +φxxt ]+ εt

rn
t = φ

rrn
t−1 + vr

t

ut = φ
uut−1 + vu

t

x̃t ≡ (xt −ηxt−1)−βηÊ(xt+1 −ηxt)

π̃t ≡ πt − γπt−1

The variables xt ,πt , it are the United States output gap, inflation rate, and federal funds target
respectively. These are directly observed by the econometrician while x̃t , π̃t ,rn

t ,ut are unobserved
state variables. Milani finds that the improvement in data fit from adaptive learning over rational
expectations is substantial, with a Bayes factor of 584 in favor of the model with learning. One
of the more interesting results obtained by the author is the (near) elimination of indexation and
habit persistence as a source of macroeconomic persistence. Under rational expectations, the mean
estimate of γ = 0.885 and the estimate for η = .911. Under adaptive learning, however, both
parameters nearly disappear, with the mean estimate for η being .117 and γ being .03. Milani
then estimates the same model, but with the imposition of no mechanical persistence, including
habit formation and inflation indexation, and finds that the Bayes factor in favor of the model
with learning over the model with rational expectations is over two million. While I seem to
have replicated the improved empirical fit of adaptive learning over rational expectations for the
just-described model, I struggled to replicate the near-disappearance of mechanical persistence
parameters.

A related outcome is presented in (Slobodyan and Wouters 2012a), who examine a model
resembling (Smets and Wouters 2007) with the difference that agents form expectations using
compact (under-parameterized) forecasting models. The adaptive learning approach in the paper
employs a more generalized Kalman filter updating mechanism. In their paper, agents treat the
model coefficients themselves as hidden states to be discovered via a Kalman Filter. In their work,
the authors estimate the model under both rational expectations and adaptive learning frameworks.
One important empirical result (Slobodyan and Wouters 2012a) find deals with the presistence of
the wage and markup shock processes. The wage and price markup shocks under both Rational
Expectations (RE) and Adaptive Learning (AL) are assumed to follow ARMA(1,1) (autoregressive
moving average) processes. The mean estimates for the AR(1) and MA(1) components of the wage
markup process are 0.96 and 0.88, respectively, while for the price markup, the AR(1) and MA(1)
components are 0.85 and 0.7, respectively. However, under Adaptive Learning, the mean estimates
for the AR(1) and MA(1) components of the wage process change to 0.53 and 0.43, respectively,
and to 0.28 and 0.48 for the price markup. Moreover, the 90% confidence intervals for these
estimates do not overlap, with the exception of the price markup MA(1) component. It is important
to note, though, that the parameters describing wage and price stickiness remain present, and there
is significant overlap in the reported confidence bounds between rational expectations and adaptive
learning approaches.

In addition to removing various mechanical persistence sources, the fluctuating nature of expec-
tations enables researchers to replicate macroeconomic time series featuring time-varying volatil-
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ity, even when the actual shocks are homoskedastic by design. This implies that expectational
shocks account for the great inflation and subsequent great moderation in US macroeconomic
data. This finding is in stark contrast to (Cogley, Primiceri, and Sargent 2010), who attribute the
primary cause of this volatility change to an exogenous shift in monetary policy. The incorporation
of time-varying beliefs, capable of producing time-varying volatility, significantly contributes to
the enhanced data-fit of numerous adaptive learning models compared to their rational expectations
counterparts.

A crucial aspect of adaptive learning models is the initialization of learning dynamics. The
authors consider several alternative approaches as a robustness check. In the baseline model, initial
beliefs are derived from variable coefficients implied by the rational expectations solution. One
alternative keeps the Σ,V,β1|0 matrices constant while estimating the rest of the model. Another
approach involves estimating the model with static agents’ beliefs and then using those beliefs as
initial values for a subsequent estimation.

The authors find that the choice of initialization does not significantly impact the model’s per-
formance. Adaptive learning consistently improves the marginal likelihood compared to rational
expectations, regardless of the initial beliefs used. I expand upon this literature presently in two
directions. First, I provide the first systematic Bayesian estimation of initial beliefs with explicit
prior distributions upon said initial beliefs, which then gives researchers another dimension along
which to compare model-fit. Second, I provide the first SMC estimate of such a model while prior
estimates of DSGE models with learning have used MCMC methods that can, plausibly, suffer
greatly from irregular posteriors. I turn now to the model itself whose parameters I shall estimate.

2 The Model
The exact model I intend to estimate is a benchmark New Keynesian model with habit persis-
tence and inflation indexation derived in (Woodford 2003), and estimated with adaptive learning
by (Milani 2007). It may be helpful to recount the derivation of the linearized model from the
optimization problems facing firms, households, and the monetary authority.

2.1 Optimal Consumption
I assume first a continuum of households distributed uniformly on the interval [0,1]. Each ith

household maximizes a discounted sum of future in-period utilities of the form:

Et

∞

∑
T=t

β
(T−t)

{
U
(
Ci

T −ηCi
T−1 : ζT

)
−
∫ 1

0
v
(
hi

T ( j) : ζT
)

d j
}
.

wherein β ∈ (0,1) is the household’s exponential discount factor, Ci
T is an index of the household’s

consumption of each of the differentiated, time-t supplied goods. hi
T ( j) is the amount of household

labor supplied for the production of each j− th good. ζT is a vector of exogenous aggregate pref-
erence shocks. The parameter 0 ≤ η ≤ 1 captures the degree of habit formation in consumption.
Within-period marginal utility then is positive with respect to the deviation of Ci

T from the previous
level of consumption ηCi

T−1, and is negative with respect to the quantity of labor supplied. U(·;ζ )
is increasing and concave for in ζ while v(·;ζ ) is concave and increasing for each ζ . I assume
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away the money-in-utility feature by working in the limiting case of a cashless economy. Et rep-
resents the expectations operator and, in this exact case, denotes rational expectations. I relax this
assumption of rational expectations when estimating the model.

The consumption and price indices are of the Dixit-Stiglitz CES form:

Ci
t ≡
[∫ 1

0
ct( j)

θ−1
θ

d j
] θ

θ−1

Pt ≡
[∫ 1

0
pt( j)1−θ

] 1
1−θ

wherein θ > 1 measures the elasticity of substitution between differentiated goods. In the opti-
mum, consumption of the j− th good is ci

t( j) =Ci
t(pt( j)/Pt)

−θ . The model assumes the existence
and completeness of markets for Arrow-Debreau securities so that all households face an identical
inter-temporal budget constraint and insure fully against idiosyncratic risks. I also assume that the
government runs a balanced budget.

Under habit formation, the first-order conditions for optimal consumption imply that:

λt =Uc(CT −ηCT−1 : ζT )−βηEt [Uc(CT+1 −ηCT ;ζT+1)]

where η > 0 implies that the marginal utility of period-t income is not equal to the marginal utility
of period-t consumption. The period-t lagrange multiplier still satisfies the equality

λt = βEt [λt+1(1+ it)Pt/Pt+1]

Here it denotes the risk-free, one-period nominal interest rate. From these two conditions one
may derive the first-order approximation of the agent’s Euler Equation:

C̃t = EtC̃t+1 − (1−βη)σ
(
ît −Et π̂t+1

)
+gt −Etgt+1

wherein
C̃t = Ĉt −ηĈt−1 −βηEt

[
Ĉt+1 −ηĈt

]
. The intertemporal elasticity of substitution is captured by the parameter σ ≡ Uc

C̄Ucc
> 0 sans habit

formation, gt ≡
σUcζ ζt

Uc
captures exogenous preference shocks, and the circumflex operatorˆdenotes

log-deviations from the steady state values. In equilibrium, Ct =Yt , which I can re-express in terms
of the output gap to derive my first linearized state variable

x̃t = Et [x̃t+1]− (1−βη)σ [it −Et [πt+1]− rn
t ]

where

x̃t ≡ xt −ηxt−1 −βηEt [xt+1 −ηxt ]

where rn
t ≡ ((1−ηβ )σ)−1 [Y n

t+1 −gt+1 − (Y n
t −gt)

]
describes the flexible-price real rate of

interest.
I now turn to the equation describing the evolution of inflation as a result of the optimal price

setting problem for a monopolistically competitive firm
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2.2 Optimal Price Setting
The model assumes a continuum of monopolistically competitive firms who adjust prices as in
(Calvo 1983) wherein some fraction 0 < 1−α < 1 of firms are allowed to adjust their price p j(t).
The 1−α fraction of firms adjusts their prices according to the rule

log pt(i) = log pt−1(i)+ γπt−1

which describes how firms index their prices to past inflation. The parameter 0 ≤ γ ≤ 1 measures
the degree of indexation. The i− th firm monopolistically supplies the i− th good according to the
production technology yt(i) = At f (ht(i)). At is an exogenous AR(1) technology shock and ht(i)
is the labor input. f (·) is an increasing and concave function. The firm’s stock of capital (and
by extension the entire economy’s stock of capital) is assumed to be fixed so that labor remains

the only variable factor of production. Firms face a common demand curve yt(i) = Yt

(
pt(i)
Pt

)−θ

for their own product, and aggregate output Yt =
[∫ 1

0 yt(i)
θ−1

θ di
] θ

θ−1 and Pt is the aggregate price
index. The firm takes as given the aggregate price and output level but monopolistically adjusts its
own price and output. This Dixit-Stiglitz aggregator over a continuum of firms yields the valuable
property that firms behave monopolistically but that their own pricing and production decisions do
not influence the aggregate output or price levels, reducing the dimensionality of the state-space.
A finite number of firms or households would require agents keep track of the reaction functions
of every other firm and household when choosing its own prices and output levels. All firms are
assumed to face identical decision problems and, when allowed to adjust their prices, set a common
pt(i) = p∗t . Thus the aggregate price level follows the process:

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

)γ)1−θ

+(1−α)p∗t
1−θ

] 1
1−θ

Firms are assumed to maximize the present-discounted sum of future profits

Et

{
∞

∑
T=t

α
T−tQt,T

[
ΠT

(
p∗t(i)

(
PT−1

Pt−1

)γ)]}

where Qt,T = β T−t
(

Pt
PT

)(
λT
λt

)
is a stochastic discount factor and ΠT (·) denotes period-T nom-

inal profits. Nominal profits are:

ΠT (p) = p∗t (i)
(

PT −1
Pt−1

)γ

YT

π∗
t (i)

(
PT−1
Pt−1

)
PT

−θ

−wt(i) f−1

(
YT

AT

(
p∗t (i)

(
PT −1
Pt−1

)γ)−θ
)

As households are indexed by j and intermediate-goods producing firms indexed by i, wt(i)
thus represents the wage for labor supplied in the production of the i− th good. Firms discount
future profits at rate α because they expect that at any time t they have a probability equal to α

that they can set the optimal price. Thus the firm chooses a sequence of optimal prices {p∗t (i)} to
maximize the within-t profits given {YT ,PT ,wT ( j),AT ,Qt,T} for T ≥ t, j ∈ [0,1]

12



Log-linearizing this first order condition gives a sequence of p̂∗t :

p̂∗t (i) = Et

∞

∑
T=t

(αβ )T−t
[
(1−αβ )

(1+ωθ)
(ωŶT − λ̂T +

vyζ

vy
ζT )+αβ (π̂T+1 − γπ̂T )

]
p̂∗(i) = log

(
p∗t
Pt

)
, ω =

vyyY
vy

is the elasticity of the marginal dis-utility of producing output with
respect to an increase in output.

I thus obtain the following law of motion for inflation:

π̃t = ξp[ωxt +[(1−ηβ )σ ]−1x̃t ]+βEt π̃t+1 +ut

wherein

π̃t ≡ πt − γπt−1

x̃t ≡ (xt −ηxt−1)−βηE(xt+1 −ηxt)

ξp =
(1−α)(1−αβ )

α(1+ωθ)

ut ≡
ξpvy,ζ

vy
ζt is an exogenous aggregate supply shock. Thus xt is the output gap, which is the

difference between actual output and the hypothetical flexible-price-equilibrium output. I use the
output gap as estimated by FRED, defined by the data series 100*(Real Gross Domestic Product-
Real Potential Gross Domestic Product)/Real Potential Gross Domestic Product.

I close the model by imposing a Taylor Rule monetary policy

it = ρit−1 +(1−ρ)(ψππt +ψxxt)+ εt

I have thus arrived at the system of equations for the evolution of the endogenous state variables
in my economy, plus two exogenous processes:

π̃t = ξp[ω x̃t +[(1−ηβ )σ ]−1x̃t ]+β Êt π̃t+1 +ut (New Keynesian Phillips Curve)

x̃t = Êt x̃t+1 − (1−βη)σ [it − Êtπt+1 − rn
t ] (New Keynesian IS Curve)

it = ρit−1 +(1−ρ)(ψπ π̃t +ψxx̃t)+ εt (Taylor Rule for Monetary Policy)
rn
t = φ

rrn
t−1 + vr

t (Natural Interest Rate process)
ut = φ

uut−1 + vu
t (Productivity shock process)

π̃t ≡ πt − γπt−1 (Inflation Indexation)

x̃t ≡ (xt −ηxt−1)−βηÊt(xt+1 −ηxt) (Habit Persistence)
where πt measures inflation, xt the output gap, it the federal funds rate, ut a supply shock,

rn
t a natural interest rate shock, and εt a monetary policy shock. (Woodford and Walsh 2005)

Provides a derivation of this very standard NK model. Expectational terms in the above model
reflect the probability distribution that agents place over the space of possible values taken on
by the endogenous variables. Under rational expectations, these expectations reflect the model-
implied equilibrium distribution. Many researchers find this assumption highly implausible, as it
assumes that agents know the true structure of the entire economy when even the best economists
can never know the true structure of the economy. Other problematic assumptions, including the
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ability for agents to coordinate among each other upon a single rational expectation, are explained
further in (Evans 2019) and (Evans and Honkapohja 2001). I should note differences in agents’
information set between when they form expectations and throughout the rest of the time series.
When deriving the REE model correlations, agents are assumed to observe all exogenous shocks
while in the estimated model agents are assumed to only to observe the endogenous variables.

2.3 Integrating learning within the model
Throughout this paper, agents will be assumed to have a “Perceived Law of Motion", (PLM) ac-
cording to which agents perceive the economy as a three-equation VAR:

Zt = a+BZt−1 +Cεt

where Zt ≡ (1,xt ,πt , it ,rn
t ,ut)

′ is a 6× 1 vector of endogenous variables, a a 5× 1 vector of con-
stants, ηt a 3× 1 vector of i.i.d. shocks, and b a 5× 3 matrix of VAR coefficients. One can use
substitution then to find the agents expectation of endogenous variables, EtZt+1, which is

EtZt+1 = Et(a+B(a+BZt + εt))

= a+Ba+B2Zt−1 +BCεt

In the case where agents use a limited information set, they do not perceive the contemporane-
ous shocks εt but only the lagged endogenous variables (xt ,πt , it ,rn

t ,ut), in which case expectations
are described below:

EtZt+1 = Et(a+B(a+BZt))

= a+Ba+B2Zt−1

Letting Xt ≡ (1,Zt−1)
′, φ̂t = (at ,bt ,ct)

′, these coefficients are updated according to the follow-
ing recursive formula:

φ̂t = φ̂t−1 + γtR−1
t Xt(yt − φ̂

′
t−1Xt)

′

Rt = Rt−1 + γt(XtX ′
t −Rt−1)

where Rt is the second-moment matrix of the endogenous variables plus a constant. The researcher
has a choice of γt in constructing the model. Decreasing-gain least squares learning, which is
asymptotically equivalent to ordinary least squares, chooses γt = t−1. Constant-gain least squares,
by contrast, chooses a constant scalar for γt = γ̄ . This learning structure places larger weight on
more recent observations, and thus allows beliefs to adapt more quickly in the face of structural
change. Further, as (Branch and Evans 2007) note, since the volatility of endogenous variables
differs, agents behaving optimally will use different values for each endogenous variable. For the
sake of reducing computational burden, I omit this feature from my estimated models and assume
that agents’ gain parameter does not vary across the three endogenous variables.
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2.3.1 Timing of Expectations Formation

In standard estimations of the rational expectations models, expectations of time t + 1 endoge-
nous variables are formed in time t, that is, such expectations are realized simultaneously with the
model’s endogenous variables. One should note that in the models estimated in this paper, expec-
tations of time t +1 endogenous variables are formed at time t −1. That is to say, at time t agents
enter the period with expectations formed during t − 1 of endogenous variables to be realized at
time t + 1. These expectations then interact with the exogenously determined variables, ut ,gt , to
determine the time t endogenous variables.

The researcher further has a choice in deciding the timing of monetary policy, and how mon-
etary policy relates to agents’ expectations. (Bullard and Mitra 2002) evaluate several such rules
including contemporaneous data specifications, in which the monetary authority uses contempora-
neous realizations of endogenous variables, lagged data specifications, in which time t −1 data is
used to determine the time t interest rate target, forward looking specifications and finally current
expectations based rules. The authors find that forward looking rules produce determinate ratio-
nal expectations equilibria that, importantly, agents are able to learn through standard adaptive
learning algorithms and that lagged data specifications often do not produce learnable, determinate
equilibria. Further, such informational assumptions upon the monetary authority would be incon-
sistent with the overall model, which assumes that private agents do not have information about
current endogenous variables when forming expectations.

In the model I estimate, agents form expectations of xt ,πt , it ,ut ,rn
t based on current beliefs and

up-to-date information on state variables and possibly information on contemporaneous shocks.
Let st be the 5×1 vector of state variables, in which case agents PLM is

st = a+Bst−1 +Cεt

st is an augmented state vector containing endogenous and exogenous variables while εt is a vector
of i.i.d shocks with variance-covariance matrix Σε Expectations of these variables at time t, t +
1, t +2 can be computed by iterating forward this PLM thusly:

Etst = a+Bst−1 +Cεt

Etst+1 = a+B(a+Bst−1 +Cεt) = a+Ba+B2st−1 +BCεt

Etst+2 = a+B(a+Ba+B2st−1 +BCεt) = a+Ba+B2a+B3st−1 +B2Cεt

This provides a very direct way of solving for the VAR(1) form of the system. Recall the
original form of the DSGE model: st = P+Qse

t+1+Rst−1+Sεt . From the above system describing
the expectations, one can substitute for the matrices P,Q,S with a+Ba,B2,B2C respectively so that
the DSGE model reduces directly to:

st = a+Ba+(B2 +R)st−1 +(BC+S)εt

which is itself the transition equation of the state space model whose likelihood function I will eval-
uate using a Kalman Filter. It will thus be useful to define clearly the transition and measurement
equations for my state-space model.
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Let st = [xt ,πt , it ,rn
t ,ut ]

′ be the partially-observed state variables. These are the output gap, in-
flation rate, federal funds rate, natural interest rate, and a productivity shock process. The first three
are observed directly while the last two are assumed to be observed by agents in the model. The ob-
servable vector of variables, yt = [xt , π̂t , ît ]′, is the output gap, taken from the Federal Reserve Bank
of St. Louis, defined by the data series 100*(Real Gross Domestic Product-Real Potential Gross
Domestic Product)/Real Potential Gross Domestic Product. The inflation rate is defined as the
annualized log-difference in the Consumer Price Index for all urban consumers, or “CPIAUCSL”,
and the it is the annualized effective federal funds rate, defined by the FRED series “FEDFUNDS”.
Thus π̂t , ît are divided by four to yield the state variables πt , it .

At time-t, agents arrive with their beliefs φt = [at ,Bt ,Ct ] and they observe st−1 and possibly εt .
They then form expectations Etxt+n for n = 0,1,2. After these expectations are formed, the en-
dogenous variables arise according to the DSGE model. Once they observe the new state variables
st , they update their beliefs according to constant-gain least-squares to φt+1,Rt+1 and the process
repeats. This implies that the transition matrix at time−t is determined only by agents’ beliefs.
When computing the Kalman Filter, agents are assumed to observe the Kalman-filtered states.

3 Results

3.1 Priors on Parameters
As I am attempting to show the impact of initial beliefs by themselves on forecasting performance,
I seek to match the common conventions in the DSGE literature when choosing prior distributions
for my parameters. I use inverse gamma distributions for the variances of shock processes, partly
to bound them from below zero. Each of my prior distributions for my three i.i.d shocks has a
mean of one and a standard deviation of .5.

For the inflation indexation value, I used a uniform prior on zero to one. I use a tightly bound
beta distribution for the discount rate, centered at .99 with a standard deviation of .01. For the
elasticity of substitution of consumption I used a gamma prior with a mean of .125 and a standard
deviation of .09. For the habit persistence parameter I used a uniform parameter from 0 to 1. For
the feedback rule on inflation in the monetary authority’s Taylor rule, I used a normal distribution
centered at 1.5 with a standard deviation of .25. This was to assure that few draws fell outside
the region of determinacy, as a feedback rule on inflation that is less than one often leads to inde-
terminacy. For the Taylor Rule feedback parameter on output, I used a normal distribution with
a mean of .5 and a standard deviation of .25. The prior for the autoregressive parameter in the
natural interest rate shock process is a uniform prior distributed from 0 to .97, as is the prior for the
autoregressive productivity process. Finally for the gain parameter I used a beta distribution with
a mean of .031 and a standard deviation of .022.

When jointly estimating initial beliefs, I do not estimate each element of the R0 matrix, as this
greatly increases the number of estimated parameters, and therefore can lead to inconsistent SMC
estimates of model parameters and of the marginal likelihood. Instead, I assume that agents begin
life with a simple VAR model of the following form:
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xt
πt
it
rn
t

ut

= a+Φ


xt−1
πt−1
it−1
rn
t−1

ut−1

+


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

εt , εt ∼ N

0,

σi 0 0
0 σrn 0
0 0 σu

 . (5)

To describe our priors for joint estimation, I review the agents’ forecasting model. Agents in
the model use a vector autoregression of the following form:

yt
(5×1)

= a
(5×1)

+ BBB
(5×5)

yt−1
(5×1)

+ CCC
(5×3)

εt
(3×1)

(6)

Recall likewise the formulae for recursive least squares:

φt = φt−1 +
1
t

Σ
−1
t X ′

t (Zt −φ
′
t−1Xt)

′

Σt = Σt−1 +
1
t
(XtX ′

t −Σt−1)

In my setup, then, Zt = (1,y′t−1,ε
′
t )
′ while φt =

[
a BBB CCC

]
. For any set of deep parameters for

which the Rational Expectations model is determinate, there exists a unique φRE that describes the
dynamics of the model. To form the priors on each element, I collect all the parameter draws from
the SMC simulated posterior for the Rational Expectations model. I then save every associated
φRE,i and reshape the elements of interest into a 26× 1 vector, and I am left with a 26× n array,
with n being the number of particles drawn during the SMC estimation of the Rational Expectations
model. I then fit a multivariate normal distribution to the 26×1 vector. Since I want to sample over
a large space of initial beliefs, and since I do not want to arbitrarily increase the posterior density
by adding to log prior density, I set each element of the multivariate normal distribution’s Σ matrix
equal to the maximum of the sample variance and one. This multivariate normal distribution serves
as the prior distribution of the estimated beliefs.

3.2 The Data
The data used for estimating the model are from 1982:q1 to 2002:q4. These include the output
gap, inflation, and the effective federal funds rate. I depart from (Milani 2007) and (Milani 2014)
and use de-meaned values for the Federal Funds Rate and the rate of inflation. I do this because
the latent variables generated by the model are zero-mean processes ex hypothesi, but for obvious
institutional reasons the rate of inflation and the federal funds rate are not zero-mean processes.

3.3 Rational Expectations Baseline
For each model I estimate, I generate five independent sequential monte carlo distributions. The
number of particles and parameter-blocks varied from model to model owing to the number of
parameters estimated. For the Rational Expectations model, the Adaptive learning models with
equilibrium-based initial beliefs, and the adaptive learning models with training-sample based be-
liefs I employed 5,000 particles and 300 stages with three randomized parameter blocks in the
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Metropolis-Hastings step. For both models with jointly-estimated initial beliefs, I doubled the
number of particles to 10,000 and doubled the number of parameter blocks to six. I obtained es-
timates similar to results found in (Milani 2007). Under Rational Expectations I find fairly high
degrees of mechanical persistence in the form of a high value of inflation indexation and a high
value of habit persistence, reported in table 2.

3.4 Equilibrium-based Initial beliefs
In all models, agents have a VAR(1) perceived law of motion: xt = a+Bxt−1 +Cεt . The informa-
tion set describes which elements of xt and εt are observed by agents when generating forecasts
Etxt+n,n ∈ Z. Agents update via recursive least squares the linear model xt = φ ′zt , where zt is
the set of all variables observed by agents at time t that are presumed to affect xt , and possibly a
constant.

For any determinate Rational Expectations model there also exists a unique VAR(1) representa-
tion xt = a(θ)+b(θ)xt−1 + c(θ)εt . Initializing beliefs around the Rational Expectations solution
means to take these matrices a(θ),b(θ),c(θ) and substitute them into agents’ perceived law of
motion xt = a+ bxt−1 + cεt . Since the VAR(1) implied by the rational expectations solution is
stationary, there also exists a unique Σ(θ) = E(xtx′t).

Consider a stationary VAR(1) process:

xt = Φxt−1 +Rεt ,

where xt and xt−1 are n×1 vectors, Φ is an n×n matrix of coefficients, R is an n×n matrix, and
εt is an n×1 vector of white noise with covariance matrix Q, (Q = E[εtε

′
t ]).

I want to find the variance-covariance matrix Σ of the process, where Σ = E[(xt −E[xt ])(xt −
E[xt ])

′]. Since the process is stationary, E[xt ] = E[xt−1] = µ , so µ = Φµ + 0, and xt = Φxt−1 +
Rεt −µ .

The equation defining the variance-covariance matrix Σ can be written as:

Σ = E[(xt −µ)(xt −µ)′]

= E[((Φxt−1 +Rεt)−µ)((Φxt−1 +Rεt)−µ)′]

= E[(Φ(xt−1 −µ)+Rεt)(Φ(xt−1 −µ)+Rεt)
′]

= ΦE[(xt−1 −µ)(xt−1 −µ)′]Φ′+RE[εtε
′
t ]R

′

= ΦΣΦ
′+RQR′.

The matrix Σ can be solved for numerically using a “doubling algorithm” or through a Schur
decomposition. For a limited-information set, this Σ can be the initial second-moment matrix. For
the full-information set, I need to find the covariance of the endogenous variables xt and the vector
of innovations εt . One can show algebraically that this is equal to (I−Φ)−1RΣε and that the second
moment matrix implied by the model is

R0 =

[
Σ (I −Φ)−1R)Σε

((I −Φ)−1RΣε)
′ Σε

]
.

where Σε = E(εtε
′
t ).
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I report parameter estimates from the for both models with equilibrium initials in tables 3 and
4. Important to note are the estimates of the degree of habit persistence in household consump-
tion, η , and the degree of inflation indexation by price-setting firms, γ . The choice of information
set consistently affects the mean estimate of each parameter, however for both parameters the
95% confidence intervals overlap. Finally, the in-sample forecasting performance of each model,
as measured by the estimated marginal data density, is somewhat higher for the model wherein
agents use the full information set available to them. This would appear to contradict the findings
of (Milani 2007) who finds that habit formation and inflation indexation drop to nearly zero when
agents are assumed to form expectations using VAR and MSV learning rules. My estimates of in-
flation indexation and habit persistence, however, do seem to comport with (Cole and Milani 2019)
who estimate the model of (Giannoni and Woodford 2004) under several expectations formations
mechanisms in addition to Rational Expectations, and find little change in η ,γ .

I report marginal data densities in 9 and 10. Under both datasets, the model with equilibrium-
based initials performs at least as well as the rational expectations baseline.

3.5 Training Sample initial beliefs
A common strategy for initializing agents’ beliefs is to estimate a model based upon pre-sample
data. This strategy is employed by (Milani 2014). In my case, I use a method similar to the method
explored in (Berardi and Galimberti 2017). The first step of choosing initial beliefs is to maximize
the likelihood function implied by a state-space model of the following form:

• State equation:
xt+1 = Φxt +Rwt

• Observation equation:
yt = Hxt .

In my case the xt is a (partially) unobserved state vector consisting of the output gap, inflation, the
effective federal funds rate, a natural interest rate shock process and a productivity process. The
wt is a vector of i.i.d shocks that directly affect the federal funds rate, the natural interest rate, and
the productivity process respectively. The vector yt consists of the three observable variables, the
output gap, inflation, and the federal funds rate.

I estimate via Maximum Likelihood the values Φ1,1,Φ1,2, ... and the variances of the shocks
ε1,t .... I assume that the R matrix is a block diagonal matrix with two zeros and three ones. I make
this assumption because, for a white noise process εt , it is not possible to separately identify σ2

ε

from the square root of a constant by which εt is multiplied. I also aim to exploit the restrictions
implied by the DSGE model itself, and one of the restrictions is a diagonal R matrix. Once I
have my parameter vector that maximizes the likelihood function of this model, I then use the
implied moment matrices E(xtx′t) to initialize Φ0,Σ0 that I update through constant gain recursive-
least-squares adaptive learning with a gain value of .01. The data used in this adaptive learning
algorithm are the Kalman-filtered states of the five-equation model. Ideally the gain value would
be estimated along with the rest of the model, but it does not affect the likelihood function of the
reduced-form SSM. I had attempted to allow the gain value in this original reduced-form model to
vary along with the model, but it did not yield any improvements in model likelihood, so I only
report those estimates with a gain value of .01.
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The structural parameter estimates are reported in 5 and 6, and the estimated marginal data
density is reported in 9 and 10. As measured by the marginal likelihood, initializing beliefs via
a training sample results can result in slightly improved estimated marginal data density, for the
1982-2002 time series, but not for the 1961-2006 dataset.

I wish to check the robustness of this result to different data sets for the training sample. For
that reason I re-estimated the model but only used the previous 30 quarters of macroeconomic
data. I wish to re-estimate in this fashion for those instances where a researcher may only have a
very limited time series on which to train agents’ initial beliefs. The results reported in 9 are the
result of this pared-down training sample. As the marginal data densities show, the training sample
model still gives significant improvement in model fit over the rational expectations baseline. Our
findings, however, are clearly sensitive to the quality of pre-sample data used to train initial beliefs.
I report as well estimates of the marginal data density from all seven models estimated using
data from 1961-2006 in 10. For the training sample I used data from 1954:q3 to 1961:q1 I find
that the Rational Expectations baseline model has a marginal data density of -839 and that only
equilibrium-based initials, under both information sets, and jointly-estimated initial beliefs under
the limited information perform better than this baseline model. Adaptive learning models with
training-sample informed initial beliefs fare significantly worse under both information sets.

3.6 Joint Estimation
Joint estimation of initial beliefs treats each element of the agents’ initial beliefs as a parameter
with its own prior distribution. The choice of prior distribution is left to the researcher, which I
describe now.

At the outset of this project I sought priors that are informed by other estimation procedures.
For every parameter draw θi, there is a unique auto-regressive transition matrix ρ(θi) and a unique
second-moment matrix Σ(θi). Thus we can use the simulated posterior to back out the distribution
of the elements of the ρ and Σ matrices.

Given this resource, I first sought to use kernel densities fitted to each unique element of the
ρ,Σ matrices, but this proved far too computationally expensive to allow for estimation of a DSGE
model in any reasonable amount of time. Since the Σ matrix is necessarily symmetric but the
ρ matrix likely asymmetric, this forces the researcher to estimate fifteen extra parameters, if the
agents use only the three endogenous variables in their perceived law of motion. If, instead, agents
use all five state variables in their VAR-PLM, the researcher must estimate an additional forty extra
parameters. Letting N ∈ N be the number of states assumed to be observed by agents, the number
of extra parameters is equal to N2 +N(N +1)/2 since I only require the upper-triangular elements
of the Σ matrix.

My final joint estimation pares down significantly the dimensionality of the problem, but does
assume some additional but, I argue, reasonable cognitive abilities of the agents. Rather than
estimating the elements of agents Σ0,Φ0 matrices directly, I estimated a subjective PLM of the
following form:
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xt
πt
it
rn
t

ut

=


b12 b13 b14 b15 b16
b22 b23 b24 b25 b26
b32 b33 b34 b35 b36
0 0 0 b44 0
0 0 0 0 b55




xt−1
πt−1
it−1
rn
t−1

ut−1

+


c11 c12 c13
c21 c22 c23
c31 c32 c33
1 0 0
0 1 0


εrn

t
εu

t
ε i

t


This PLM assumes that agents know the structure of the economy including at least some of

restrictions placed upon possible values of bt ,ct , namely those elements that cannot take on values
different than zero. This is because the autoregressive shocks, if known to be autoregressive, will
not be affected by past or present values of any variable except itself. I argue that this is a more
reasonable assumption than allowing for the the elements of the b0 and c0 matrix to to take on any
value as it comports more with the “Cognitive Consistency Principle” which I articulated earlier.
The CCP enjoins researchers to assume that agents in their model are at least as intelligent or
informed as the researchers themselves. The researcher, in my case, knows that the autoregressive
shocks are autoregressive shocks but does not know the value of the autoregressive coefficient
nor the standard deviation of its i.i.d shock. Imposition of such restrictions on the b0,c0 matrices
endows agents with this same information; agents do not know the autoregressive coefficients nor
the standard deviations but they do know that these are AR(1) processes.

Under the full information set where agents are assumed to observe
[
εrn

t ,εu
t ,ε

i
t
]′, this requires

the researcher to estimate 29 additional parameters, namely the 26 non-zero elements of the b,c
matrices and the variances of the i.i.d shocks. Under the limited information set where agents are
only assumed to observe [xt ,πt , it ,rn

t ,ut ]
′, researchers need only estimate the 17 non-zero elements

of the b matrix and the variances of the i.i.d shocks for a total of 20 additional parameters. The
prior distribution I use is informed by previous SMC estimations of the model under rational ex-
pectations. Vectorizing φ0 into a 26×1 allows me to use a multivariate normal distribution as my
prior for the elements of the b,c matrices. I use inverse gamma distributions for agents’ subjective
σ2

i .
Having derived how I estimate φ0, I now need to derive the initial second moment matrix of re-

gressors, or E(xt ,πt ,rn
t ,ut)

′(xt ,πt ,rn
t ,ut) in the case of the limited information set and E(xt ,πt ,rn

t ,ut ,ε
rn

t ,εu
t ,ε

i
t )
′(xt ,πt ,rn

t ,ut ,ε
rn

t ,εu
t ,ε

i
t ).

This is fairly straightforward as I have already completed this exercise for initializing beliefs
around the Rational Expectations solution:

R0 =

[
Σx (I −b)−1c)Σε

((I −b)−1cΣε)
′ Σε

]
.

where Σx is solved for using a Schur decomposition method. For the limited information set, this
second moment matrix becomes

R0 =

[
Σx (I −b)−1)Σε

((I −b)−1Σε)
′ Σε

]
.

Estimation results from Joint Estimation of initial beliefs, however, showed some promise
compared to all other initialization schemes, for two reasons. First, as shown in 10, the model with
jointly estimated initial beliefs and a limited information set had the highest estimated marginal
data density while also having a lower variance than three other estimated models. The two models
with jointly estimated initial beliefs with limited and full information sets had Bayes factors of over
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900,000 and over 3000 respectively over the Rational Expectations baseline. Second, posterior
estimates of the model’s deep parameters were fairly consistent between SMC runs, relative to the
Rational Expectations baseline, as shown in figure 7.

3.7 Evolution of beliefs
For each of the estimated models with adaptive learning, I also plotted percentile charts that display
the estimated evolution of agents’ beliefs. Supposing agents have the PLM xt = a+ bxt−1 + cεt ,
the figures 8 through 13 show the percentiles of each element of φ̂t = [â, b̂, ĉ] in the case of the
full information model or φ̂t = [â, b̂] in the case of the limited information model, where ŷ denotes
the difference between the estimated adaptive learning value and the rational expectations solution
value. Of concern was the apparently low estimated learning gain for each model paired with, rel-
ative to (Milani 2007) and (Slobodyan and Wouters 2012b) and (Slobodyan and Wouters 2012a) a
relatively high value for the mechanical persistence parameters η ,γ . A low estimated learning gain
indicates agents are not encountering large forecast errors and thus not updating their beliefs by a
large magnitude. One explanation I sought to rebut was the possibility that my chosen projection
facility was artificially constraining agents’ beliefs within a region outside one warranted by the
data.

For any parameter guess θ̂i one can plot, using the kalman filtered states, the estimated agents’
beliefs and the difference between that and the rational expectations implied coefficients. A very
flat series indicates little to no updating while a series with a high variance indicates substantial
updating. Looking at the graph reveals that this problem of beliefs not updating due to the pro-
jection facility, a problem one might call “belief degeneracy,” arises only in the case where beliefs
are initialized with a training sample model with a full information set. This problem of belief
degeneracy does not arise in any other initialization scheme with any other information set. That
belief degeneracy would arise in this model should not surprise the reader, however, as the training
sample initialization scheme forces initial beliefs to a single point in the possible space of initial
beliefs, regardless of the other model parameters. This can force initial beliefs to stay far away
from the rational expectations solution that previous theoretical work has shown is expectationally
stable under a large set of assumptions, as described in (Evans and Honkapohja 2001).

4 Summary and Conclusions
I sought in this paper to evaluate three different choices for initializing agents’ beliefs in a small-
scale New Keynesian DSGE model; those choices included centering beliefs at the rational expec-
tations equilibrium-implied coefficients and second-moments, using a training sample of data to
estimate a reduced-form VAR model, and finally jointly estimating initial beliefs along with the
structural parameters of the model. The results shown here may guide future research and inform
the choice of initialization scheme that modelers choose in DSGE models with adaptive learning.
I evaluated those choices according to the estimated marginal data density. I review the biggest
advantages and disadvantages of each choice presently.

Equilibrium-based initialization was shown, in both the shorter twenty-year data set and the
much longer forty-year data set, and with both information sets, to perform at least as well or
better than the rational expectations baseline. However, under no information set or data set did
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equilibrium initials give conclusively the highest marginal data density. For both data sets, jointly
estimated initial beliefs under a limited information set provided the highest estimated marginal
data density, but with a somewhat higher variance of that estimate than equilibrium or training
sample based initial beliefs. Finally, training sample based initial beliefs performed the worst out
of the three, delivering marginal data densities lower than the Rational Expectations baseline under
both information sets and both data sets on which to estimate the model. The significant change
in marginal data density when moving from the small to the large data set reveals a weakness
of initializing beliefs using training samples, namely that the quality of said beliefs depends on
the quality of the training sample data itself. Having investigated all three initialization choices, I
propose the following heuristic to guide future research in this area: For models wherein agents use
relatively small forecasting models so that the number of additional estimated parameters is low,
researchers should try to jointly estimate those initial beliefs even if they must impose a relatively
impoverished forecasting model upon the agents. For models wherein agents must use larger
forecasting models, such as in the model of (Smets and Wouters 2007) and a richer information
set, researchers should instead initialize beliefs around the rational expectations equilibrium.
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A Tables

Table 1: Prior Distributions for Model Parameters
Parameter Description Prior(mean, std)

η Habit persistence UNIFORM[0,1]
β Discount factor BETA[.99,.01]
σ Intertemporal Elasticity of Substitution

(IES)
GAMMA[0.125, 0.09]

γ Inflation indexation UNIFORM[0,1]
ξp Phillips Curve slope GAMMA[0.015, 0.011]
ω Marginal Disutility of Work NORMAL[0.8975, 0.4]
ρ Taylor Rule Feedback on Interest UNIFORM[0, 0.97]
ξπ Taylor Rule Feedback on Inflation NORMAL[1.5, 0.25]
ξx Taylor Rule Feedback on Output NORMAL[0.5, 0.25]
φr Natural Interest Rate Coefficient UNIFORM[0, 0.97]
φu Productivity Shock Coefficient UNIFORM[0, 0.97]
σe Monetary Policy Variance INV_GAMMA[1, 0.5]
σr Natural Interest Rate Variance INV_GAMMA[1, 0.5]
σu Productivity Variance INV_GAMMA[1, 0.5]
ḡ Learning Gain BETA[.031, .022]

Table 2: SMC Estimates, 5000 particles with 100 stages, Rational Expectations, 5 runs
Parameter Mean 5% Interval 95% Interval
η 0.67 0.52 0.78
β 0.99 0.97 1.00
σ 0.26 0.16 0.34
γ 0.97 0.91 1.00
ξp 0.00 0.00 0.00
ω 0.75 0.19 1.25
ρ 0.95 0.92 0.97
ξπ 1.56 1.30 1.84
ξx 0.43 0.23 0.61
φr 0.94 0.91 0.96
φu 0.04 0.00 0.12
σe 0.23 0.20 0.26
σr 1.15 0.84 1.49
σu 0.40 0.36 0.44
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Table 3: SMC Estimates, 5000 particles with 300 stages, Equilibrium Initials, Full Information, 5
runs

Parameter Mean 5% Interval 95% Interval
η 0.54 0.33 0.72
β 0.99 0.97 1.00
σ 0.19 0.09 0.33
γ 0.96 0.88 1.00
ξp 0.00 0.00 0.00
ω 0.86 0.25 1.47
ρ 0.94 0.91 0.97
ξπ 1.58 1.24 1.94
ξx 0.35 0.07 0.68
φr 0.95 0.90 0.97
φu 0.04 0.00 0.12
σe 0.23 0.20 0.26
σr 1.10 0.63 1.80
σu 0.42 0.36 0.48
ḡ 0.0218 0.0049 0.0484

Table 4: SMC Estimates, 5000 particles with 300 stages, Equilibrium Initials, Limited Information,
5 runs

Parameter Mean 5% Interval 95% Interval
η 0.26 0.10 0.45
β 0.99 0.97 1.00
σ 0.29 0.16 0.45
γ 0.59 0.10 0.97
ξp 0.00 0.00 0.00
ω 0.81 0.19 1.48
ρ 0.93 0.88 0.97
ξπ 1.65 1.27 2.00
ξx 0.28 0.04 0.62
φr 0.61 0.52 0.71
φu 0.12 0.01 0.36
σe 0.23 0.21 0.27
σr 3.01 1.75 4.94
σu 0.42 0.36 0.48
ḡ 0.0176 0.0088 0.0313
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Table 5: SMC Estimates, 5000 particles with 300 stages, Training Sample Initials, Full Informa-
tion, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.40 0.14 0.61
β 0.98 0.96 1.00
σ 0.34 0.20 0.52
γ 0.23 0.02 0.53
ξp 0.00 0.00 0.01
ω 0.82 0.22 1.45
ρ 0.97 0.96 0.97
ξπ 1.43 1.03 1.83
ξx 0.13 0.01 0.35
φr 0.82 0.66 0.95
φu 0.37 0.03 0.83
σe 0.23 0.21 0.27
σr 0.37 0.33 0.43
σu 0.32 0.27 0.37
ḡ 0.0061 0.0012 0.0153

Table 6: SMC Estimates, 5000 particles with 300 stages, Training Sample Initials, Limited Infor-
mation, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.24 0.09 0.42
β 0.98 0.96 1.00
σ 0.24 0.18 0.33
γ 0.15 0.01 0.38
ξp 0.00 0.00 0.00
ω 0.80 0.23 1.38
ρ 0.97 0.96 0.97
ξπ 1.42 1.05 1.81
ξx 0.15 0.02 0.34
φr 0.27 0.06 0.51
φu 0.22 0.03 0.45
σe 0.24 0.21 0.27
σr 0.62 0.50 0.75
σu 0.39 0.34 0.44
ḡ 0.0106 0.0025 0.0212
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Table 7: SMC Estimates, 10000 particles with 500 stages, Jointly Estimated Initials, Full Informa-
tion, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.28 0.13 0.42
β 1.00 0.99 1.00
σ 0.27 0.18 0.38
γ 0.93 0.77 1.00
ξp 0.00 0.00 0.01
ω 0.67 0.27 1.05
ρ 0.93 0.90 0.96
ξπ 1.81 1.44 2.08
ξx 0.31 0.11 0.59
φr 0.87 0.76 0.94
φu 0.12 0.01 0.36
σe 0.24 0.21 0.28
σr 1.12 0.83 1.44
σu 0.53 0.41 0.74
ḡ 0.0145 0.0079 0.0256

Table 8: SMC Estimates, 10000 particles with 500 stages, Jointly Estimated Initials, Limited In-
formation, 5 runs

Parameter Mean 5% Interval 95% Interval
η 0.39 0.12 0.66
β 0.99 0.98 1.00
σ 0.60 0.37 0.87
γ 0.37 0.02 0.94
ξp 0.01 0.00 0.02
ω 0.80 0.28 1.35
ρ 0.93 0.89 0.96
ξπ 1.65 1.29 2.01
ξx 0.31 0.07 0.61
φr 0.79 0.60 0.94
φu 0.67 0.17 0.90
σe 0.23 0.20 0.27
σr 1.48 0.84 2.35
σu 0.38 0.33 0.44
ḡ 0.0062 0.0011 0.0138
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Table 9: Mean and Standard Deviation of Natural Logarithms of the Marginal Likelihoods, 1982-
2002 data

Full Information Limited Information
Rational Expectations -331.8948 (0.9613) N/A
Equilibrium Initials -329.5719 (0.9909) -332.9946 (0.4705)

Training Sample Initials -650.1220 (112.3248) -351.2298 (7.3816)
Jointly Estimated Initials -328.9922 (2.6250) -326.1411 (0.9756)

Table 10: Mean and Standard Deviation of Natural Logarithms of the Marginal Likelihoods, 1961-
2006 data

Full Information Limited Information
Rational Expectations -839.2973 (3.4430) N/A
Equilibrium Initials -833.9175 (0.8594) -838.5927 (0.7877)

Training Sample Initials -2764.7828 (0.6802) -859.9934 (0.3554)
Jointly Estimated Initials -885.0740 (12.0577) -833.8648 (1.7775)
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B Figures

Figure 1: Marginal Posterior Density, SMC, Rational Expectations
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Figure 2: Marginal Posterior Density, SMC, Equilibrium Initials, Full Information
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Figure 3: Marginal Posterior Density, SMC, Equilibrium Initials, Limited Information
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Figure 4: Marginal Posterior Density, SMC, Training Sample Initials, Full Information
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Figure 5: Marginal Posterior Density, SMC, Training Sample Initials, Limited Information
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Figure 6: Marginal Posterior Density, SMC, Jointly Estimated Initials, Full Information
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Figure 7: Marginal Posterior Density, SMC, Jointly Estimated Initials, Limited Information
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Figure 8: Beliefs Evolution, Equilibrium Inits, Full Info
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Figure 9: Beliefs Evolution, Equilibrium Inits, Limited Info
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Figure 10: Beliefs Evolution, Training Sample Inits, Full Info
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Figure 11: Beliefs Evolution, Training Sample, Limited Info
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Figure 12: Beliefs Evolution, Jointly Estimated Inits, Full Info
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Figure 13: Beliefs Evolution, Jointly Estimated Inits, Limited Info

42


	Introduction and Literature Review
	The Theory of Adaptive Learning
	Bayesian Estimation of DSGE models
	Prior Estimation of DSGE models with learning

	The Model
	Optimal Consumption
	Optimal Price Setting
	Integrating learning within the model
	Timing of Expectations Formation


	Results
	Priors on Parameters
	The Data
	Rational Expectations Baseline
	Equilibrium-based Initial beliefs
	Training Sample initial beliefs
	Joint Estimation
	Evolution of beliefs

	Summary and Conclusions
	Tables
	Figures

